第186章 全新的时代

“看来算学碑并不是生硬的照搬问题,而是根据问题的实际难易程度,去把给每一层安排合适的问题。”

第2502层问题,是关于实变函数论。

19世纪集合论的创立,在20世纪首先引起了积分学的变革,从而导致实变函数的建立。

程理在一番辛苦作答后,才总算解决了这个问题。

接下来,他还遇到了泛函分析的问题,还有抽象代数的问题。

随后,他遇到了一个让他颇为头疼的问题领域——拓扑学。

拓扑学是20世纪数学的一个重要领域,是研究几何图形的连续性质,最后发展成了数学的一门基础学科,随之还发展出了微分拓扑和代数拓扑。

在拓扑学后,程理在随后的问题中,还遇到了概率论的问题,并且是以公理化后的概率论。

除此之外还有微分几何、多复变函数论等问题,以及差点把程理难倒的集合论悖论,也就是著名的罗素悖论。

罗素悖论在地球上引发了第三次数学危机,其影响力可见一斑。程理在这道题上差点没被难倒,最后才好不容易涉险过关。

此外还有哥德尔不完全定理和递归论等硬骨头。

最终,在这些理论部分完成后,程理来到了第2700题。

从这里开始,程理发现接下来的问题,都是跟实际应用有关联的。

在19世纪和20世纪,是数学全面应用的时代。

并且在进入20世纪后,数学在实际应用上更是得到了空前发展。

很多18世纪和19世纪被创立出来的一些深奥数学理论,甚至当时连创立者自己都不知道自己写出来的这些数学理论能有什么实际应用,只是当作纯数学的理论而已。

但在20世纪,这些原本不知道能拿来干嘛的数学理论,一个个都派上了大用场。

这其中最显著的一个典型就是《广义相对论》的诞生。

爱因斯坦的相对论,是人类第一次系统性的构筑了对时空的认知观。

而爱因斯坦描述中的空间,并非是均匀的,而是会收引力影响而变成曲面式的。

为了描述曲面形式的空间性质,用语言很难清晰的定义,爱因斯坦需要一个强有力的数学武器做支撑,最终他找到了黎曼几何。

黎曼几何是创立于1854年,却在60年后的1915年帮助爱因斯坦建立了相对论。

广义相对论的数学表述第一次揭示了非欧几何的现实意义,成为了数学史上应用的伟大例子之一。